KMA315 Analysis 3A: Solutions to Problems 3

1. Let:
(i) $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions;
(ii) $S=\{x \in \mathbb{R}: f(x) \geq g(x)\}$; and
(iii) $\left(x_{n}\right)_{n=0}^{\infty}$ be a sequence of points from S.

Show that if $\lim _{n \rightarrow \infty} x_{n}$ exists then $\lim _{n \rightarrow \infty} x_{n} \in S$. (5 marks)
Proof. Let:
(i) $h: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function;
(ii) $T=\{x \in \mathbb{R}: h(x) \geq 0\}$; and
(iii) $x \in \mathcal{C}(T)$ (ie. $h(x)<0)$.

Let $\delta=-\frac{h(x)}{2}$. It follows from h being continuous that there exists $\varepsilon>0$ such that for each $x^{\prime} \in(x-\varepsilon, x+\varepsilon), h\left(x^{\prime}\right) \in(h(x)-\delta, h(x)+\delta)=\left(\frac{3 h(x)}{2}, \frac{h(x)}{2}\right)$, and hence $(x-\varepsilon, x+\varepsilon) \subseteq \mathcal{C}(T)$. Since there is an open ball around x entirely contained in $\mathcal{C}(T), x$ cannot be a limit point of T. Since x was any arbitrary point in $\mathcal{C}(T)$, all limit points of T must be in T, and hence T is closed.

Finally, letting $h=f-g$ (ie. $h(x)=(f-g)(x)=f(x)-g(x))$, we have $S=T$ (which is closed), and hence $\lim _{n \rightarrow \infty} x_{n} \in S$.

Kumudini's solution

Proof. Let:
(i) $h: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function;
(ii) $T=\{x \in \mathbb{R}: h(x) \geq 0\}$; and
(iii) $\left(x_{n}\right)_{n=0}^{\infty}$ be a convergent sequence of points from T.

Assume that $h\left(\lim _{n \rightarrow \infty} x_{n}\right)<0$, ie. $\lim _{n \rightarrow \infty} x_{n} \notin T$. Since h is continuous, it follows from Proposition 4.3.13 in the typed notes that $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=h\left(\lim _{n \rightarrow \infty} x_{n}\right)$.

Therefore, by the definition of the limit of a sequence, for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|h\left(x_{m}\right)-h\left(\lim _{n \rightarrow \infty} x_{n}\right)\right|<\varepsilon$ for all $m \geq N$.

Let $\varepsilon=-\frac{h\left(\lim _{n \rightarrow \infty} x_{n}\right)}{2}$, then for each $m \geq N$ we have:

$$
\begin{aligned}
& -\varepsilon=\frac{h\left(\lim _{n \rightarrow \infty} x_{n}\right)}{2}<h\left(x_{m}\right)-h\left(\lim _{n \rightarrow \infty} x_{n}\right)<-\frac{h\left(\lim _{n \rightarrow \infty} x_{n}\right)}{2}=\varepsilon \\
& \Rightarrow \frac{3 h\left(\lim _{n \rightarrow \infty} x_{n}\right)}{2}<h\left(x_{m}\right)<\frac{h\left(\lim _{n \rightarrow \infty} x_{n}\right)}{2}<0 .
\end{aligned}
$$

But $h\left(x_{m}\right)<0$ for all $m \geq N$ contradicts $\left(x_{n}\right)_{n=0}^{\infty}$ being a sequence of points from T. Therefore our assumption that $h\left(\lim _{n \rightarrow \infty} x_{n}\right)<0$ cannot be true, and hence $\lim _{n \rightarrow \infty} x_{n} \in T$.

Finally, letting $h=f-g$ (ie. $h(x)=(f-g)(x)=f(x)-g(x)$), we have $S=T$, and hence $\lim _{n \rightarrow \infty} x_{n} \in S$.
2. Let $f:[0,1] \rightarrow[0,1]$ be the function defined by

$$
f(x)= \begin{cases}x & \text { when } x \in \mathbb{Q} ; \text { and } \\ 1-x & \text { when } x \in \mathcal{C}(\mathbb{Q})\end{cases}
$$

Prove that:
(i) f assumes every value between 0 and 1 (ie. that f is surjective); (1 mark)
(ii) f is continuous only at $x=\frac{1}{2}$. (2 marks)

Proof. (i) For each $x \in[0,1]$, we trivially have $x= \begin{cases}f(x) & x \in \mathbb{Q} \text {; and } \\ f(1-x) & x \in \mathcal{C}(\mathbb{Q}) .\end{cases}$
(ii) For each $\delta>0, f(x) \in\left(f\left(\frac{1}{2}\right)-\delta, f\left(\frac{1}{2}\right)+\delta\right)=\left(\frac{1}{2}-\delta, \frac{1}{2}+\delta\right)$ is trivially satisfied for all $x \in\left(\frac{1}{2}-\delta, \frac{1}{2}+\delta\right)$. Hence, f is continuous at $x=\frac{1}{2}$. Let $x \in\left(\left[0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right]\right) \cap \mathbb{Q}$. For each $\varepsilon>0$, let $y \in(x-\varepsilon, x+\varepsilon) \cap \mathcal{C}(\mathbb{Q})$ (which necessarily exists since $\mathcal{C}(\mathbb{Q})$ are dense in \mathbb{R}), and let $\delta=\frac{|f(x)-f(y)|}{2}$. Then we have $y \in(x-\varepsilon, x+\varepsilon)$ such that $f(y) \notin(f(x)-\delta, f(x)+\delta)$. Since ε was arbitrary, f is discontinuous at x.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=0$ for all $x \in \mathbb{Q}$. Establish what value $f(x)$ takes for irrational values of x. (3 marks)

Proof. Let $x \in \mathcal{C}(\mathbb{Q})$. Suppose $f(x) \neq 0$ and let $\delta=\frac{|f(x)|}{2}$. Since \mathbb{Q} are dense in \mathbb{R}, for each ε there exists $x^{\prime} \in(x-\varepsilon, x+\varepsilon) \cap \mathbb{Q}$, which satisfies $f\left(x^{\prime}\right)=0 \notin(f(x)-\delta, f(x)+\delta)$. Hence under the assumption that $f(x) \neq 0$ we would have that f is discontinuous at x, which contradicts f being continuous. Therefore we must also have $f(x)=0$ for all irrational x.
4. Let $\left(f_{n}\right)_{n=0}^{\infty}$ be the sequence of real-valued functions on \mathbb{R} where for each $n \in \mathbb{N}$,

$$
f_{n}(x)=x+\frac{1}{n} \text { for all } x \in \mathbb{R} .
$$

Establish that:
(i) $\left(f_{n}\right)_{n=0}^{\infty}$ converges uniformly on \mathbb{R}; (2 marks)
(ii) $\left(f_{n}^{2}\right)_{n=0}^{\infty}$ does not converge uniformly on \mathbb{R}. (3 marks)

Note: for each $n \in \mathbb{N}, f_{n}^{2}(x)=\left[f_{n}(x)\right]^{2}$ for all $x \in \mathbb{R}$.

Proof. (i) For each $\varepsilon>0$, there trivially exists $N \in \mathbb{N}$ such that $\frac{1}{n}<\varepsilon$ for all $n \geq N$. In which case we have $\left|f_{n}(x)-f(x)\right|=\frac{1}{n}<\varepsilon$ for all $n \geq N$ and $x \in \mathbb{R}$. Hence $\left(f_{n}\right)_{n=0}^{\infty}$ converges uniformly to f.
(ii) For each $n \in \mathbb{N}$ and $x \in \mathbb{R}, f_{n}^{2}(x)=\left(x+\frac{1}{n}\right)^{2}=x^{2}+\frac{2}{n} x+\frac{1}{n^{2}}$ which is a 'happy-face' quadratic with a single root at $-\frac{1}{n}$. It is trivially the case that for each $x \in \mathbb{R}, \lim _{n \rightarrow \infty} f_{n}^{2}(x)=x^{2}$, and hence that f_{n}^{2} converges pointwise to f^{2}. However for each $\varepsilon>0$ and $n \in \mathbb{N}$:

$$
\begin{aligned}
& f_{n}(x)-f(x)>\varepsilon \\
& \Rightarrow x^{2}+\frac{2}{n} x+\frac{1}{n^{2}}-x^{2}>\varepsilon \\
& \Rightarrow \frac{2}{n} x+\frac{1}{n^{2}}>\varepsilon \\
& \Rightarrow \frac{2}{n} x>\varepsilon-\frac{1}{n^{2}} \\
& \Rightarrow x>\frac{n^{2} \varepsilon-1}{2 n}
\end{aligned}
$$

Hence for each $x>\frac{n^{2} \varepsilon-1}{2 n},\left|f_{n}(x)-f(x)\right|>\varepsilon$, and hence f_{n}^{2} does not converge uniformly.
5. Let $\left(f_{n}\right)_{n=0}^{\infty}$ be the sequence of real-valued functions on $[0,1]$ where for each $n \in \mathbb{N}$,

$$
f_{n}(x)=x^{n} \text { for all } x \in[0,1] .
$$

(i) Establish whether $\left(f_{n}\right)_{n=0}^{\infty}$ converges pointwise; (1 mark)
(ii) if it does, find the pointwise limit of $\left(f_{n}\right)_{n=0}^{\infty}$. (1 mark)

For each $x \in \mathbb{R}, \lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} x^{n}= \begin{cases}0 & 0 \leq x<1 ; \\ 1 & x=1 .\end{cases}$
Hence the pointwise limit of $\left(f_{n}\right)_{n=0}^{\infty}$ is $f:[0,1] \rightarrow[0,1]$ where $f(x)= \begin{cases}0 & 0 \leq x<1 ; \\ 1 & x=1 .\end{cases}$

