
KMA315 Analysis 3A: Solutions to Problems 3

1. Let:

(i) f, g : R→ R be continuous functions;

(ii) S = {x ∈ R : f(x) ≥ g(x)}; and

(iii) (xn)∞n=0 be a sequence of points from S.

Show that if limn→∞ xn exists then limn→∞ xn ∈ S. (5 marks)

Proof. Let:

(i) h : R→ R be a continuous function;

(ii) T = {x ∈ R : h(x) ≥ 0}; and

(iii) x ∈ C(T ) (ie. h(x) < 0).

Let δ = −h(x)
2

. It follows from h being continuous that there exists ε > 0 such that for each

x′ ∈ (x− ε, x + ε), h(x′) ∈ (h(x)− δ, h(x) + δ) = (3h(x)
2
, h(x)

2
), and hence (x− ε, x + ε) ⊆ C(T ).

Since there is an open ball around x entirely contained in C(T ), x cannot be a limit point of
T . Since x was any arbitrary point in C(T ), all limit points of T must be in T , and hence T is
closed.

Finally, letting h = f−g (ie. h(x) = (f−g)(x) = f(x)−g(x)), we have S = T (which is closed),
and hence limn→∞ xn ∈ S.
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Kumudini’s solution

Proof. Let:

(i) h : R→ R be a continuous function;

(ii) T = {x ∈ R : h(x) ≥ 0}; and

(iii) (xn)∞n=0 be a convergent sequence of points from T .

Assume that h(limn→∞ xn) < 0, ie. limn→∞ xn /∈ T . Since h is continuous, it follows from
Proposition 4.3.13 in the typed notes that limn→∞ h(xn) = h(limn→∞ xn).

Therefore, by the definition of the limit of a sequence, for each ε > 0 there exists N ∈ N such
that |h(xm)− h(limn→∞ xn)| < ε for all m ≥ N .

Let ε = −h(limn→∞ xn)
2

, then for each m ≥ N we have:

−ε =
h(limn→∞ xn)

2
< h(xm)− h( lim

n→∞
xn) < −h(limn→∞ xn)

2
= ε

⇒ 3h(limn→∞ xn)

2
< h(xm) <

h(limn→∞ xn)

2
< 0.

But h(xm) < 0 for all m ≥ N contradicts (xn)∞n=0 being a sequence of points from T . Therefore
our assumption that h(limn→∞ xn) < 0 cannot be true, and hence limn→∞ xn ∈ T .

Finally, letting h = f − g (ie. h(x) = (f − g)(x) = f(x) − g(x)), we have S = T , and hence
limn→∞ xn ∈ S.
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2. Let f : [0, 1]→ [0, 1] be the function defined by

f(x) =

{
x when x ∈ Q; and

1− x when x ∈ C(Q).

Prove that:

(i) f assumes every value between 0 and 1 (ie. that f is surjective); (1 mark)

(ii) f is continuous only at x = 1
2
. (2 marks)

Proof. (i) For each x ∈ [0, 1], we trivially have x =

{
f(x) x ∈ Q; and

f(1− x) x ∈ C(Q).

(ii) For each δ > 0, f(x) ∈ (f(1
2
) − δ, f(1

2
) + δ) = (1

2
− δ, 1

2
+ δ) is trivially satisfied for all

x ∈ (1
2
− δ, 1

2
+ δ). Hence, f is continuous at x = 1

2
. Let x ∈

(
[0, 1

2
)∪ (1

2
, 1]
)
∩Q. For each

ε > 0, let y ∈ (x−ε, x+ε)∩C(Q) (which necessarily exists since C(Q) are dense in R), and

let δ = |f(x)−f(y)|
2

. Then we have y ∈ (x − ε, x + ε) such that f(y) /∈ (f(x) − δ, f(x) + δ).
Since ε was arbitrary, f is discontinuous at x.
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3. Let f : R → R be a continuous function such that f(x) = 0 for all x ∈ Q. Establish what
value f(x) takes for irrational values of x. (3 marks)

Proof. Let x ∈ C(Q). Suppose f(x) 6= 0 and let δ = |f(x)|
2

. Since Q are dense in R, for each ε
there exists x′ ∈ (x− ε, x+ ε)∩Q, which satisfies f(x′) = 0 /∈ (f(x)− δ, f(x) + δ). Hence under
the assumption that f(x) 6= 0 we would have that f is discontinuous at x, which contradicts f
being continuous. Therefore we must also have f(x) = 0 for all irrational x.
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4. Let (fn)∞n=0 be the sequence of real-valued functions on R where for each n ∈ N,

fn(x) = x+
1

n
for all x ∈ R.

Establish that:

(i) (fn)∞n=0 converges uniformly on R; (2 marks)

(ii) (f 2
n)∞n=0 does not converge uniformly on R. (3 marks)

Note: for each n ∈ N, f 2
n(x) = [fn(x)]2 for all x ∈ R.

Proof. (i) For each ε > 0, there trivially exists N ∈ N such that 1
n
< ε for all n ≥ N . In which

case we have |fn(x) − f(x)| = 1
n
< ε for all n ≥ N and x ∈ R. Hence (fn)∞n=0 converges

uniformly to f .

(ii) For each n ∈ N and x ∈ R, f 2
n(x) = (x+ 1

n
)2 = x2+ 2

n
x+ 1

n2 which is a ‘happy-face’ quadratic
with a single root at − 1

n
. It is trivially the case that for each x ∈ R, limn→∞ f

2
n(x) = x2,

and hence that f 2
n converges pointwise to f 2. However for each ε > 0 and n ∈ N:

fn(x)− f(x) > ε

⇒ x2 +
2

n
x+

1

n2
− x2 > ε

⇒ 2

n
x+

1

n2
> ε

⇒ 2

n
x > ε− 1

n2

⇒ x >
n2ε− 1

2n

Hence for each x > n2ε−1
2n

, |fn(x)− f(x)| > ε, and hence f 2
n does not converge uniformly.
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5. Let (fn)∞n=0 be the sequence of real-valued functions on [0, 1] where for each n ∈ N,

fn(x) = xn for all x ∈ [0, 1].

(i) Establish whether (fn)∞n=0 converges pointwise; (1 mark)

(ii) if it does, find the pointwise limit of (fn)∞n=0. (1 mark)

For each x ∈ R, limn→∞ fn(x) = limn→∞ x
n =

{
0 0 ≤ x < 1;

1 x = 1.

Hence the pointwise limit of (fn)∞n=0 is f : [0, 1]→ [0, 1] where f(x) =

{
0 0 ≤ x < 1;

1 x = 1.
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